Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 560
1.
Chemosphere ; 358: 142136, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38692363

The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.

2.
Biomed Pharmacother ; 175: 116652, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38692061

Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.

3.
Sci Rep ; 14(1): 9959, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38693281

Steam-assisted gravity drainage (SAGD) is an efficient thermal recovery technique for oil sands and extra heavy oil exploitation. The development of steam chamber goes through multi-stage physical processes for SAGD production in a heavy oil reservoir with an interlayer. In this study, considering the situation that an interlayer is located directly above a pair of horizontal wells, we analyzed the whole process of steam chamber development. We divided the whole process into stages I-V, which are the first rising stage, the first lateral expansion stage, the second rising stage, the second lateral expansion stage and the confinement stage, respectively. Particularly, we further divided stage II into 2 periods and stage IV into 3 periods. These stages and periods can help us understand the development process of steam chamber dominated by an interlayer more profoundly. Based on the divided stages and periods, we established different models of SAGD production by assuming different geometric shapes of steam chamber in different stages and periods. Oval shape was assumed in stages I and III, and inverse triangle shape was hypothesized in stages II, IV and V. The formulas of the front distance of steam chamber and the oil production rate of SAGD were deduced from the established models for different development stages. At the end, we performed two example applications to SAGD production in heavy oil reservoirs with an interlayer. The real oil production rates were matched very well with the theoretical oil production rates calculated by the deduced formulas, which implies the multi-stage development model of steam chamber is of reliability and utility.

4.
Eye (Lond) ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38740961

PURPOSE: To further explore the influence of genotype, including mutation type and structural domain, on the severity of macular atrophy, we measured the central retinal thickness (CRT) in patients with ABCA4-related retinopathy. METHODS: A total of 66 patients were included in the cohort. This was a retrospective investigation. The patients were tested using whole exon sequencing and ophthalmic exams, including slip lamp exams, best-corrected visual acuity, optical coherence tomography, fundus photo, and fundus autofluorescence. RESULTS: In this study, we discovered that mutations on nucleotide binding domains (NBD) lead to less CRT (45.00 ± 25.25µm, 95% CI: 31.54-58.46) had significantly less CRT than the others (89.75 ± 71.17µm, 95% CI: 30.25-149.25, p = 0.032), and could accelerate the rate of CRT decrease. CONCLUSIONS: Our study provides new perspectives in the understanding of ABCA4-related retinopathy.

5.
IEEE J Transl Eng Health Med ; 12: 401-412, 2024.
Article En | MEDLINE | ID: mdl-38606393

Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual's bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.


Bone Density , Osteoporosis , Humans , Aged , Osteoporosis/diagnosis , Bone and Bones , Absorptiometry, Photon/methods , Spine
6.
Biomed Opt Express ; 15(4): 2343-2357, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38633066

In neurosurgery, accurately identifying brain tumor tissue is vital for reducing recurrence. Current imaging techniques have limitations, prompting the exploration of alternative methods. This study validated a binary hierarchical classification of brain tissues: normal tissue, primary central nervous system lymphoma (PCNSL), high-grade glioma (HGG), and low-grade glioma (LGG) using transfer learning. Tumor specimens were measured with optical coherence tomography (OCT), and a MobileNetV2 pre-trained model was employed for classification. Surgeons could optimize predictions based on experience. The model showed robust classification and promising clinical value. A dynamic t-SNE visualized its performance, offering a new approach to neurosurgical decision-making regarding brain tumors.

7.
Mol Genet Genomic Med ; 12(4): e2426, 2024 Apr.
Article En | MEDLINE | ID: mdl-38562046

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS: A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS: The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS: We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.


Intellectual Disability , Mandibulofacial Dysostosis , Microcephaly , Humans , Microcephaly/pathology , Mandibulofacial Dysostosis/genetics , Mandibulofacial Dysostosis/pathology , Phenotype , Mutation , Intellectual Disability/genetics , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism
8.
Brain Sci ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672045

In the past few years, significant advancements in microscopic imaging technology have led to the production of numerous high-resolution images capturing brain neurons at the micrometer scale. The reconstructed structure of neurons from neuronal images can serve as a valuable reference for research in brain diseases and neuroscience. Currently, there lacks an accurate and efficient method for neuron reconstruction. Manual reconstruction remains the primary approach, offering high accuracy but requiring significant time investment. While some automatic reconstruction methods are faster, they often sacrifice accuracy and cannot be directly relied upon. Therefore, the primary goal of this paper is to develop a neuron reconstruction tool that is both efficient and accurate. The tool aids users in reconstructing complete neurons by calculating the confidence of branches during the reconstruction process. The method models the neuron reconstruction as multiple Markov chains, and calculates the confidence of the connections between branches by simulating the reconstruction artifacts in the results. Users iteratively modify low-confidence branches to ensure precise and efficient neuron reconstruction. Experiments on both the publicly accessible BigNeuron dataset and a self-created Whole-Brain dataset demonstrate that the tool achieves high accuracy similar to manual reconstruction, while significantly reducing reconstruction time.

9.
Food Res Int ; 184: 114276, 2024 May.
Article En | MEDLINE | ID: mdl-38609208

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Biological Products , Cynara scolymus , Garlic , Helianthus , Inulin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Antioxidants , Magnetic Resonance Spectroscopy , Lasers
10.
Sci Total Environ ; 930: 172510, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38641119

Although complexation between dissolved organic matter (DOM) and ubiquitous Fe is known to have a major influence on electron transferring ability in redoximorphic soil, it was unclear whether and how this complexation affected nitrate reduction and N2O productivity. The nitrate reduction of paddy soil in the presence of crop residues returning under flooding conditions was explored in this study. The rate of nitrate reduction in control soil was 0.0677 d-1, while it improved 1.99 times in treatment soil with Chinese milk vetch (CMV) straw returning. During a 28-day incubation period, N2O productivity decreased 0.08-0.91 ppb in CMV soil and 0.43-0.50 ppb in rice straw soil compared with control. The presence of crop residue increased DOC content and Fe (III) reduction rate, which aided in the formation of Fe (II)-DOC complexation. Meanwhile, the addition of CMV increased the content of DOC by 5.14-78.77 mg/kg and HCl extractable Fe (II) by 35.12-1221.03 mg/kg. Crop residues returning to soil increased the relative abundance of iron reductive and electroactive genera, as well as denitrifying genera with more copies of denitrification genes (Archangiaceae, Gemmatimonadaceae, and Burkholderiaceae). The synergistic effect of Fe-DOC complexation, electroactive genera, and denitrifying genera contributed to up-regulated expression of napA and narG (5.84 × 106 and 3.39 × 107 copies increased in the CMV soil compared to the control) numbers and equally accelerated reduction of nitrate to nitrite, while further nitrite reduction was primarily attributed to the abiotic reaction by Fe (II). From a bio-electrochemical point of view, this work provided new insight into the nitrate reduction of paddy soil impacted by Fe-DOC complexation.


Nitrates , Soil , Soil/chemistry , Oryza , Iron/chemistry , Agriculture/methods , Oxidation-Reduction , Crops, Agricultural , Soil Microbiology , Denitrification , Soil Pollutants
12.
Influenza Other Respir Viruses ; 18(3): e13263, 2024 Mar.
Article En | MEDLINE | ID: mdl-38503498

BACKGROUND: Abnormal changes of monocytes have been observed in acute COVID-19, whereas associations of monocyte count with long COVID were not sufficiently elucidated. METHODS: A cohort study was conducted among COVID-19 survivors discharged from hospital. The primary outcomes were core symptoms of long COVID, distance walked in 6 min, and lung function, and the secondary outcomes were health-related quality of life and healthcare use after discharge. Latent variable mixture modeling was used to classify individuals into groups with similar trajectory of monocyte count from discharge to 2-year after symptom onset. Multivariable adjusted generalized linear regression models and logistic regression models were used to estimate the associations of monocyte count trajectories and monocyte count at discharge with outcomes. RESULTS: In total, 1389 study participants were included in this study. Two monocyte count trajectories including high to normal high and normal trajectory were identified. After multivariable adjustment, participants in high to normal high trajectory group had an odds ratio (OR) of 2.52 (95% CI, 1.44-4.42) for smell disorder, 2.27 (1.27-4.04) for 6-min walking distance less than lower limit of normal range, 2.45 (1.08-5.57) for total lung capacity (TLC) < 80% of predicted, 3.37 (1.16-9.76) for personal care problem, and 1.70 (1.12-2.58) for rehospitalization after discharge at 2-year follow-up compared with those in normal trajectory group. Monocyte count at discharge showed similar results, which was associated with smell disorder, TLC < 80% of predicted, diffusion impairment, and rehospitalization. CONCLUSIONS: Monocyte count may serve as an easily accessible marker for long-term management of people recovering from COVID-19.


COVID-19 , Olfaction Disorders , Humans , Cohort Studies , Monocytes , Post-Acute COVID-19 Syndrome , Quality of Life , Exercise Tolerance , Lung , Survivors
13.
Front Bioeng Biotechnol ; 12: 1372688, 2024.
Article En | MEDLINE | ID: mdl-38515622

A novel photoelectrochemical (PEC) aptasensor based on a dual Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction for the ultrasensitive detection of circulating tumor cells (CTCs) was developed. The α-Fe2O3/MoS2/Bi2S3 nanocomposite was prepared via a step-by-step route, and the photoproduced electron/hole transfer path was speculated by conducting trapping experiments of reactive species. α-Fe2O3/MoS2/Bi2S3-modified electrodes exhibited greatly enhanced photocurrent under visible light due to the double Z-scheme charge transfer process, which met the requirement of the PEC sensor for detecting larger targets. After the aptamer was conjugated on the photoelectrode through chitosan (CS) and glutaraldehyde (GA), when MCF-7 cells were presented and captured, the photocurrent of the PEC biosensing system decreased due to steric hindrance. The current intensity had a linear relationship with the logarithm of MCF-7 cell concentration ranging from 10 to 1×105 cells mL-1, with a low detection limit of 3 cell mL-1 (S/N = 3). The dual Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction-modified PEC aptasensor exhibited high sensitivity and excellent specificity and stability. Additionally, MCF-7 cells in human serum were determined by this PEC aptasensor, exhibiting great potential as a promising tool for clinical detection.

14.
Aging (Albany NY) ; 16(5): 4789-4810, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38451194

This study aimed to explore the regulatory role of SORBS1 in macrophage polarization and the PI3K/AKT signaling pathway, as well as analyze its mechanism in epithelial-mesenchymal transition (EMT) of breast cancer cells. We established SORBS1-overexpressing and knockout cell lines and verified the effects of SORBS1 on cell viability, invasion, and migration by phenotyping experiments and assaying the expression of associated proteins. Furthermore, we established a breast cancer cell and macrophage co-culture system to validate the effect of SORBS1 expression on macrophage polarization and killing of breast cancer cells. Bioinformatics analysis showed that SORBS1 was lowly expressed in breast cancer (BRCA) samples and highly expressed in healthy tissues. Decreased SORBS1 expression was associated with poor prognosis, and the PI3K/AKT signaling pathway was the most significantly enriched pathway. In vitro experiments showed that high expression of SORBS1 inhibited the migration of breast cancer cells, as well as the PI3K/AKT signaling pathway, and blocked EMT of these cells. In addition, SORBS1 induced macrophage polarization to the M1-type and enhanced the killing effect on breast cancer cells in the co-culture system. In conclusion, we successfully verified that SORBS1 inhibits the invasion and migration of breast cancer cells, induces macrophage M1-type polarization, and blocks EMT of breast cancer cells, and it may act by regulating the PI3K/AKT signaling pathway.


Breast Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Female , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Cell Line, Tumor , Signal Transduction , Macrophages/metabolism , Cell Movement/genetics , Cell Proliferation , Microfilament Proteins/metabolism
15.
Vascul Pharmacol ; 155: 107369, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38554988

Mouse models are invaluable to understanding fundamental mechanisms in vascular biology during development, in health and different disease states. Several constitutive or inducible models that selectively knockout or knock in genes in vascular endothelial cells exist; however, functional and phenotypic differences exist between microvascular and macrovascular endothelial cells in different organs. In order to study microvascular endothelial cell-specific biological processes, we developed a Tamoxifen-inducible von Willebrand Factor (vWF) Cre recombinase mouse in the SJL background. The transgene consists of the human vWF promoter with the microvascular endothelial cell-selective 734 base pair sequence to drive Cre recombinase fused to a mutant estrogen ligand-binding domain [ERT2] that requires Tamoxifen for activity (CreERT2) followed by a polyadenylation (polyA) signal. We initially observed Tamoxifen-inducible restricted bone marrow megakaryocyte and sciatic nerve microvascular endothelial cell Cre recombinase expression in offspring of a mixed strain hemizygous C57BL/6-SJL founder mouse bred with mT/mG mice, with >90% bone marrow megakaryocyte expression efficiency. Founder mouse offspring were backcrossed to the SJL background by speed congenics, and intercrossed for >10 generations to develop hemizygous Tamoxifen-inducible vWF Cre recombinase (vWF-iCre/+) SJL mice with stable transgene insertion in chromosome 1. Microvascular endothelial cell-specific Cre recombinase expression occurred in the sciatic nerves, brains, spleens, kidneys and gastrocnemius muscles of adult vWF-iCre/+ SJL mice bred with Ai14 mice, with retained low level bone marrow and splenic megakaryocyte expression. This novel mouse strain would support hypothesis-driven mechanistic studies to decipher the role(s) of specific genes transcribed by microvascular endothelial cells during development, as well as in physiologic and pathophysiologic states in an organ- and time-dependent manner.

16.
MedComm (2020) ; 5(3): e505, 2024 Mar.
Article En | MEDLINE | ID: mdl-38469548

Triple-positive breast cancer (TPBC) poorly responds to current standard neoadjuvant therapy (trastuzumab plus pertuzumab and chemotherapy). Our previous MUKDEN 01 study showed a promising total pathological complete response (tpCR) rate of 30.4% with neoadjuvant pyrotinib (pan-human epidermal growth factor receptor tyrosine kinase inhibitor) plus dalpiciclib (cyclin-dependent kinase 4/6 inhibitor) and letrozole, but the efficacy remains suboptimal. This pilot study (NCT05228951) explored adding trastuzumab to this triplet neoadjuvant regimen in patients with stage II-III TPBC. The primary endpoint was tpCR (ypT0/is, ypN0) rate. Between February 2022 and June 2022, 12 patients were enrolled, and seven (58%; 95% confidence interval [CI], 27.7%-84.8%) patients achieved tpCR. The rate of residual cancer burden (RCB) 0-I was 75% (95% CI, 46.8%-91.1%). The objective response rate (ORR) was 92% (95% CI, 64.6%-98.5%). Mean Ki-67 level was significantly reduced from 45.0% (95% CI, 19.5%-70.5%) at baseline to 17.2% (95% CI, 0.7%-33.7%) after neoadjuvant therapy (p = 0.03). The most common grade 3 adverse events were diarrhea (four [33%]) and decreased neutrophil count (three [25%]). No grade 4 adverse events or treatment-related deaths occurred. This four-drug neoadjuvant regimen shows promising pathological response with an acceptable safety profile in patients with TPBC. A randomized controlled trial (NCT05638594) of this regimen is being conducted.

17.
Front Psychol ; 15: 1308397, 2024.
Article En | MEDLINE | ID: mdl-38434947

Objectives: To explore prevalence of depression and its influencing factors in middle-aged and elderly patients with chronic diseases. Method: Data were extracted from the 2018 China Health and Retirement Tracking Survey (CHARLS) for 6,704 middle-aged and elderly patients ≥45 years with chronic diseases. The influencing variables were selected based on LASSO-logistic regression model, and a nomogram was further drawn to visualize regression results. Results: Comorbidity between chronic diseases and depression symptoms were detected in 3058 individuals (45.6%). Female, rural, lower education, poor, insomnia, multiple chronic disease, and functional impairment were associated with a higher proportion of depression. Meanwhile, family interaction, intergenerational financial support, social activity intensity, and satisfaction with life can protect against depression. Conclusion: Depressive symptoms are common in Chinese older adults with chronic diseases. They need regular assessment and intervention, especially those with multiple diseases, female, rural, alone, impaired, poor sleep, or poor economy. These high-risk elders also need family, medical, and social support and care.

18.
Cell Death Discov ; 10(1): 133, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472174

Exosomes derived from cancer are regarded as significant mediators of cancer-host crosstalk. Hypoxia, on the other hand, is one of the essential characteristics of solid tumors. This research set out to discover how circulating exosomes from hypoxic esophageal squamous cell carcinoma (ESCC) contribute to the formation of metastatic niches and distant metastasis. First, we noticed that human umbilical vein endothelial cells (HUVECs) had their tight connections disrupted and the expression of proteins involved in angiogenesis boosted by ESCC hypoxic exosomes. Hypoxia significantly induced Circ-ZNF609 expression in exosomes from ESCC, which was then internalized by HUVECs, as determined by circular RNA screening. High Circ-ZNF609 expression in HUVECs facilitated angiogenesis and vascular permeability, thereby promoting pre-metastatic niche formation, and enhancing distant metastasis in vitro and in vivo. Exosomal Circ-ZNF609 activated vascular endothelial growth factor A (VEGFA) mechanistically by sponging miR-150-5p. Exosomal Circ-ZNF609 also interacted with HuR and inhibited HuR binding to ZO-1, Claudin-1, and Occludin mRNAs, thereby reducing their translation. Collectively, our findings identified an essential function for exosomal Circ-ZNF609 from ESCC cells, suggesting the potential therapeutic value of exosomes for ESCC patients.

19.
Aging (Albany NY) ; 16(5): 4270-4281, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38393686

OBJECTIVE: Previous studies have demonstrated that various hematologic diseases (HDs) induce alterations in telomere length (TL). The aim of this study is to investigate whether genetically predicted changes in TL have an impact on the risk of developing HDs. METHODS: GWAS data for TL and 11 HDs were extracted from the database. The R software package "TwoSampleMR" was employed to conduct a two-sample Mendelian randomization (MR) analysis, in order to estimate the influence of TL changes on the risk of developing the 11 HDs. RESULTS: We examined the effect of TL changes on the risk of developing the 11 HDs. The IVW results revealed a significant causal association between genetically predicted longer TL and the risk of developing acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MANTLE), and hodgkin lymphoma (HODGKIN). However, there was no significant causal relationship observed between TL changes and the risk of developing chronic myeloid leukemia (CML), diffuse large b-cell lymphoma (DLBCL), marginal zone b-cell lymphoma (MARGINAL), follicular lymphoma (FOLLICULAR), monocytic leukemia (MONOCYTIC), and mature T/NK-cell lymphomas (TNK). CONCLUSIONS: The MR analysis revealed a positive association between genetically predicted longer TL and an increased risk of developing ALL, AML, CLL, MANTLE, and HODGKIN. This study further supports the notion that cells with longer TL have greater proliferative and mutational potential, leading to an increased risk of certain HDs.


Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Lymphoma, Mantle-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mendelian Randomization Analysis , Leukemia, Myeloid, Acute/genetics , Telomere/genetics , Telomere/pathology , Genome-Wide Association Study
20.
Sci Total Environ ; 921: 171080, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38387581

Accurately evaluating drought impact on agriculture poses a challenge to regional food security, particularly in compound drought (i.e., meteorological and agricultural drought co-occurring) scenarios. This study presents a novel approach utilizing Vine copula for coupling spatiotemporal features to evaluate drought propagation. Three-dimensional clustering method was employed to identify meteorological and agricultural drought events, which excelled in capturing dynamic evolution characteristics (duration, area, severity, etc.) as well as integrating them into comprehensive meteorological drought intensity (IMD) and agricultural drought intensity (IAD). Through spatiotemporal matching, compound drought events were extracted from the meteorological-agricultural drought event pairs. From compound drought perspective, compound duration (CD) and compound area (CA) were devised to characterize drought propagation potential across time and space. Finally, the Vine copula method was employed to model the interdependence between four key coupling features, namely IMD, IAD, CD, and CA, and evaluate the probability of triggering agricultural drought with different intensity levels. Results showed that CD and CA can respectively characterize the temporal and spatial accumulation scale of drought propagation. At a certain IMD level, CD significantly influences the propagation probability (i.e., "stratification" phenomenon), while CA increases the probability proportionally. Probability evaluation lacking spatiotemporal information may underestimate the likelihood of drought propagation characterized by "low-IMD" but "long-CD" or "large-CA". The four-dimensional Vine copula structure can effectively couple dependence relationships of compound drought characteristics, and exhibits reliable robustness. This research provides stakeholders accurate probabilistic evaluation under compound drought scenarios, offering new insight into drought propagation.

...